Stochastic models of the chemostat
نویسندگان
چکیده
We consider the modeling of the dynamics of the chemostat at its very source. The chemostat is classically represented as a system of ordinary differential equations. Our goal is to establish a stochastic model that is valid at the scale immediately preceding the one corresponding to the deterministic model. At a microscopic scale we present a pure jump stochastic model that gives rise, at the macroscopic scale, to the ordinary differential equation model. At an intermediate scale, an approximation diffusion allows us to propose a model in the form of a system of stochastic differential equations. We expound the mechanism to switch from one model to another, together with the associated simulation procedures. We also describe the domain of validity of the different models. Key-words: stochastic differential equations, chemostat, pure jump process, diffusion approximation, tau-leap method, Monte Carlo method, Gillespie algorithm ∗ [email protected] — Project–Team MERE, INRIA/INRA, UMR MISTEA, bât. 29, 2 place Viala, 34060 Montpellier cedex 06, France. † [email protected] — Université Montpellier 2 / I3M, case courrier 51, place Eugène Bataillon, 34095 Montpellier cedex 5; this author is associate researcher for Project–Team MERE, INRIA/INRA, UMR MISTEA. ‡ [email protected] — Université Montpellier 2 / I3M, case courrier 51, place Eugène Bataillon, 34095 Montpellier cedex 5. in ria -0 05 37 88 6, v er si on 2 5 Ju l 2 01 1 Modèles stochastiques du chemostat Résumé : Nous reprenons la modélisation de la dynamique du chemostat à sa source. Le chemostat est classiquement représenté par un système d’équations différentielles. Notre objectif est d’établir un modèle stochastique qui est valable à l’échelle qui précède immédiatement celle qui correspond au modèle déterministe. Partant d’une échelle microscopique, nous présentons un modèle stochastique de sauts purs qui conduit, à l’échelle macroscopique, au modèle d’équation différentielle. À une échelle intermédiaire, une approximation diffusion nous permet de proposer un modèle sous la forme d’un système d’équations différentielles stochastiques. Nous détaillons les techniques qui permettent de passer d’une échelle à une autre ainsi que de simuler ces différents modèles. Nous décrivons également les domaines de validité des différents modèles. Mots-clés : équations différentielles stochastiques, chemostat, processus de saut, approximation diffusion, méthode “tau-leap”, méthode de Monte Carlo, algorithme de Gillespie in ria -0 05 37 88 6, v er si on 2 5 Ju l 2 01 1 Stochastic models of the chemostat 3
منابع مشابه
Modèles stochastiques du chemostat
We consider the modeling of the dynamics of the chemostat at its very source. The chemostat is classically represented as a system of ordinary differential equations. Our goal is to establish a stochastic model that is valid at the scale immediately preceding the one corresponding to the deterministic model. At a microscopic scale we present a pure jump stochastic model that gives rise, at the ...
متن کاملStochastic models for the chemostat
The chemostat is classically represented, at high population scale, as a system of ordinary differential equations. Our goal is to establish a set of stochastic models that are valid at different scales: from the small population scale to the scale immediately preceding the one corresponding to the deterministic model. At a microscopic scale we present a pure jump stochastic model that gives ri...
متن کاملA numerical method for discrete fractional--order chemostat model derived from nonstandard numerical scheme
In this paper, the fractional--order form of three dimensional chemostat model with variable yields is introduced. The stability analysis of this fractional system is discussed in detail. In order to study the dynamic behaviours of the mentioned fractional system, the well known nonstandard (NSFD) scheme is implemented. The proposed NSFD scheme is compared with the forward Euler and ...
متن کاملA numerical approach to determine mutant invasion fitness and evolutionary singular strategies.
We propose a numerical approach to study the invasion fitness of a mutant and to determine evolutionary singular strategies in evolutionary structured models in which the competitive exclusion principle holds. Our approach is based on a dual representation, which consists of the modeling of the small size mutant population by a stochastic model and the computation of its corresponding determini...
متن کاملBehavioral study of piston manufacturing plant through stochastic models
Piston plays a vital role in almost all types of vehicles. The present study discusses the behavioral study of a piston manufacturing plant. Manufacturing plants are complex repairable systems and therefore, it is difficult to evaluate the performance of a piston manufacturing plant using stochastic models. The stochastic model is an efficient performance evaluator for repairable systems. In...
متن کامل